U ovom vodiču naučit ćete kako izbrisati ključ s b-stabla. Također ćete pronaći radne primjere brisanja ključeva s B-stabla u C, C ++, Java i Python.
Brisanje elementa na B-stablu sastoji se od tri glavna događaja: pretraga čvora u kojem postoji ključ koji treba izbrisati , brisanje ključa i uravnoteženje stabla ako je potrebno.
Tijekom brisanja stabla može se dogoditi stanje zvano underflow . Do podlijevanja dolazi kada čvor sadrži manje od minimalnog broja tipki koje bi trebao sadržavati.
Izrazi koje treba razumjeti prije proučavanja postupka brisanja su:
- Inorder prethodnik
Najveći ključ na lijevom podređenom čvoru naziva se njegov inorder prethodnik. - Nasljednik Inorder
Najmanji ključ na desnom podređenju čvora naziva se njegovim inorder nasljednikom.
Operacija brisanja
Prije nego što prođete dolje navedene korake, morate znati ove činjenice o B stablu stupnja m .
- Čvor može imati najviše m djece. (tj. 3)
- Čvor može sadržavati najviše
m - 1
ključeva. (tj. 2) - Čvor bi trebao imati najmanje
⌈m/2⌉
djece. (tj. 2) - Čvor (osim korijenskog čvora) trebao bi sadržavati najmanje
⌈m/2⌉ - 1
ključeva. (tj. 1)
Tri su glavna slučaja za postupak brisanja u B stablu.
Slučaj I
Ključ koji treba izbrisati leži u listu. Postoje dva slučaja za to.
- Brisanje ključa ne krši svojstvo minimalnog broja ključeva koje čvor treba držati.
U stablu ispod brisanje 32 ne krši gore navedena svojstva.Brisanje ključa lista (32) s B-stabla
- Brisanje ključa krši svojstvo minimalnog broja ključeva koje čvor treba držati. U ovom slučaju, posuđujemo ključ od njegovog neposrednog susjednog bratskog i sestrinskog čvora redoslijedom slijeva udesno.
Prvo posjetite neposrednog lijevog brata ili sestru. Ako lijevi čvor sestre ima više od minimalnog broja ključeva, posudite ključ od ovog čvora.
Inače, provjerite je li posuđen od neposrednog desnog čvora brata ili sestre.
U stablu ispod brisanje 31 dovodi do gore navedenog stanja. Posudimo ključ s lijevog čvora brata i sestre.Brisanje ključa lista (31) Ako oba čvorišta s neposrednim bratom ili sestrom već imaju minimalni broj ključeva, spojite čvor s lijevim ili s desnim čvorom. To se spajanje vrši preko nadređenog čvora.
Brisanje 30 rezultata u gornjem slučaju.Brisanje ključa lista (30)
Slučaj II
Ako se ključ koji treba izbrisati nalazi u unutarnjem čvoru, dogodit će se sljedeći slučajevi.
- Unutarnji čvor, koji se briše, zamjenjuje se prethodnikom u redoslijedu ako lijevo dijete ima više od minimalnog broja ključeva.
Brisanje internog čvora (33)
- Unutarnji čvor, koji se briše, zamjenjuje se nasljednikom inorder ako pravo dijete ima više od minimalnog broja ključeva.
- Ako bilo koje dijete ima točno minimalan broj tipki, spojite lijevu i desnu djecu.
Brisanje internog čvora (30) Nakon spajanja ako roditeljski čvor ima manje od minimalnog broja ključeva, potražite braću i sestre kao u slučaju I.
Slučaj III
U tom se slučaju visina stabla smanjuje. Ako se ciljni ključ nalazi u unutarnjem čvoru, a brisanjem ključa dolazi do manjeg broja ključeva u čvoru (tj. Manje od potrebnog minimuma), potražite prethodnika inorder i nasljednika inorder. Ako oba djeteta sadrže minimalni broj ključeva, posudba se ne može izvršiti. To dovodi do slučaja II (3), tj. Spajanja djece.
Ponovno potražite bratu ili sestru kako bi posudili ključ. Ali, ako brat ili sestra također ima samo minimalni broj ključeva, spojite čvor s bratom i sestrom zajedno s roditeljem. U skladu s tim rasporedite djecu (redoslijed povećavanja).

Primjeri Pythona, Java i C / C ++
Python Java C C ++ # Deleting a key on a B-tree in Python # Btree node class BTreeNode: def __init__(self, leaf=False): self.leaf = leaf self.keys = () self.child = () class BTree: def __init__(self, t): self.root = BTreeNode(True) self.t = t # Insert a key def insert(self, k): root = self.root if len(root.keys) == (2 * self.t) - 1: temp = BTreeNode() self.root = temp temp.child.insert(0, root) self.split_child(temp, 0) self.insert_non_full(temp, k) else: self.insert_non_full(root, k) # Insert non full def insert_non_full(self, x, k): i = len(x.keys) - 1 if x.leaf: x.keys.append((None, None)) while i>= 0 and k(0) = 0 and k(0) x.keys(i)(0): i += 1 self.insert_non_full(x.child(i), k) # Split the child def split_child(self, x, i): t = self.t y = x.child(i) z = BTreeNode(y.leaf) x.child.insert(i + 1, z) x.keys.insert(i, y.keys(t - 1)) z.keys = y.keys(t: (2 * t) - 1) y.keys = y.keys(0: t - 1) if not y.leaf: z.child = y.child(t: 2 * t) y.child = y.child(0: t - 1) # Delete a node def delete(self, x, k): t = self.t i = 0 while i x.keys(i)(0): i += 1 if x.leaf: if i < len(x.keys) and x.keys(i)(0) == k(0): x.keys.pop(i) return return if i = t: self.delete(x.child(i), k) else: if i != 0 and i + 2 = t: self.delete_sibling(x, i, i - 1) elif len(x.child(i + 1).keys)>= t: self.delete_sibling(x, i, i + 1) else: self.delete_merge(x, i, i + 1) elif i == 0: if len(x.child(i + 1).keys)>= t: self.delete_sibling(x, i, i + 1) else: self.delete_merge(x, i, i + 1) elif i + 1 == len(x.child): if len(x.child(i - 1).keys)>= t: self.delete_sibling(x, i, i - 1) else: self.delete_merge(x, i, i - 1) self.delete(x.child(i), k) # Delete internal node def delete_internal_node(self, x, k, i): t = self.t if x.leaf: if x.keys(i)(0) == k(0): x.keys.pop(i) return return if len(x.child(i).keys)>= t: x.keys(i) = self.delete_predecessor(x.child(i)) return elif len(x.child(i + 1).keys)>= t: x.keys(i) = self.delete_successor(x.child(i + 1)) return else: self.delete_merge(x, i, i + 1) self.delete_internal_node(x.child(i), k, self.t - 1) # Delete the predecessor def delete_predecessor(self, x): if x.leaf: return x.pop() n = len(x.keys) - 1 if len(x.child(n).keys)>= self.t: self.delete_sibling(x, n + 1, n) else: self.delete_merge(x, n, n + 1) self.delete_predecessor(x.child(n)) # Delete the successor def delete_successor(self, x): if x.leaf: return x.keys.pop(0) if len(x.child(1).keys)>= self.t: self.delete_sibling(x, 0, 1) else: self.delete_merge(x, 0, 1) self.delete_successor(x.child(0)) # Delete resolution def delete_merge(self, x, i, j): cnode = x.child(i) if j> i: rsnode = x.child(j) cnode.keys.append(x.keys(i)) for k in range(len(rsnode.keys)): cnode.keys.append(rsnode.keys(k)) if len(rsnode.child)> 0: cnode.child.append(rsnode.child(k)) if len(rsnode.child)> 0: cnode.child.append(rsnode.child.pop()) new = cnode x.keys.pop(i) x.child.pop(j) else: lsnode = x.child(j) lsnode.keys.append(x.keys(j)) for i in range(len(cnode.keys)): lsnode.keys.append(cnode.keys(i)) if len(lsnode.child)> 0: lsnode.child.append(cnode.child(i)) if len(lsnode.child)> 0: lsnode.child.append(cnode.child.pop()) new = lsnode x.keys.pop(j) x.child.pop(i) if x == self.root and len(x.keys) == 0: self.root = new # Delete the sibling def delete_sibling(self, x, i, j): cnode = x.child(i) if i 0: cnode.child.append(rsnode.child(0)) rsnode.child.pop(0) rsnode.keys.pop(0) else: lsnode = x.child(j) cnode.keys.insert(0, x.keys(i - 1)) x.keys(i - 1) = lsnode.keys.pop() if len(lsnode.child)> 0: cnode.child.insert(0, lsnode.child.pop()) # Print the tree def print_tree(self, x, l=0): print("Level ", l, " ", len(x.keys), end=":") for i in x.keys: print(i, end=" ") print() l += 1 if len(x.child)> 0: for i in x.child: self.print_tree(i, l) B = BTree(3) for i in range(10): B.insert((i, 2 * i)) B.print_tree(B.root) B.delete(B.root, (8,)) print("") B.print_tree(B.root)
// Inserting a key on a B-tree in Java import java.util.Stack; public class BTree ( private int T; public class Node ( int n; int key() = new int(2 * T - 1); Node child() = new Node(2 * T); boolean leaf = true; public int Find(int k) ( for (int i = 0; i < this.n; i++) ( if (this.key(i) == k) ( return i; ) ) return -1; ); ) public BTree(int t) ( T = t; root = new Node(); root.n = 0; root.leaf = true; ) private Node root; // Search the key private Node Search(Node x, int key) ( int i = 0; if (x == null) return x; for (i = 0; i < x.n; i++) ( if (key < x.key(i)) ( break; ) if (key == x.key(i)) ( return x; ) ) if (x.leaf) ( return null; ) else ( return Search(x.child(i), key); ) ) // Split function private void Split(Node x, int pos, Node y) ( Node z = new Node(); z.leaf = y.leaf; z.n = T - 1; for (int j = 0; j < T - 1; j++) ( z.key(j) = y.key(j + T); ) if (!y.leaf) ( for (int j = 0; j = pos + 1; j--) ( x.child(j + 1) = x.child(j); ) x.child(pos + 1) = z; for (int j = x.n - 1; j>= pos; j--) ( x.key(j + 1) = x.key(j); ) x.key(pos) = y.key(T - 1); x.n = x.n + 1; ) // Insert the key public void Insert(final int key) ( Node r = root; if (r.n == 2 * T - 1) ( Node s = new Node(); root = s; s.leaf = false; s.n = 0; s.child(0) = r; Split(s, 0, r); _Insert(s, key); ) else ( _Insert(r, key); ) ) // Insert the node final private void _Insert(Node x, int k) ( if (x.leaf) ( int i = 0; for (i = x.n - 1; i>= 0 && k = 0 && k x.key(i)) ( i++; ) ) _Insert(x.child(i), k); ) ) public void Show() ( Show(root); ) private void Remove(Node x, int key) ( int pos = x.Find(key); if (pos != -1) ( if (x.leaf) ( int i = 0; for (i = 0; i < x.n && x.key(i) != key; i++) ( ) ; for (; i = T) ( for (;;) ( if (pred.leaf) ( System.out.println(pred.n); predKey = pred.key(pred.n - 1); break; ) else ( pred = pred.child(pred.n); ) ) Remove(pred, predKey); x.key(pos) = predKey; return; ) Node nextNode = x.child(pos + 1); if (nextNode.n>= T) ( int nextKey = nextNode.key(0); if (!nextNode.leaf) ( nextNode = nextNode.child(0); for (;;) ( if (nextNode.leaf) ( nextKey = nextNode.key(nextNode.n - 1); break; ) else ( nextNode = nextNode.child(nextNode.n); ) ) ) Remove(nextNode, nextKey); x.key(pos) = nextKey; return; ) int temp = pred.n + 1; pred.key(pred.n++) = x.key(pos); for (int i = 0, j = pred.n; i < nextNode.n; i++) ( pred.key(j++) = nextNode.key(i); pred.n++; ) for (int i = 0; i < nextNode.n + 1; i++) ( pred.child(temp++) = nextNode.child(i); ) x.child(pos) = pred; for (int i = pos; i < x.n; i++) ( if (i != 2 * T - 2) ( x.key(i) = x.key(i + 1); ) ) for (int i = pos + 1; i < x.n + 1; i++) ( if (i != 2 * T - 1) ( x.child(i) = x.child(i + 1); ) ) x.n--; if (x.n == 0) ( if (x == root) ( root = x.child(0); ) x = x.child(0); ) Remove(pred, key); return; ) ) else ( for (pos = 0; pos key) ( break; ) ) Node tmp = x.child(pos); if (tmp.n>= T) ( Remove(tmp, key); return; ) if (true) ( Node nb = null; int devider = -1; if (pos != x.n && x.child(pos + 1).n>= T) ( devider = x.key(pos); nb = x.child(pos + 1); x.key(pos) = nb.key(0); tmp.key(tmp.n++) = devider; tmp.child(tmp.n) = nb.child(0); for (int i = 1; i < nb.n; i++) ( nb.key(i - 1) = nb.key(i); ) for (int i = 1; i = T) ( devider = x.key(pos - 1); nb = x.child(pos - 1); x.key(pos - 1) = nb.key(nb.n - 1); Node child = nb.child(nb.n); nb.n--; for (int i = tmp.n; i> 0; i--) ( tmp.key(i) = tmp.key(i - 1); ) tmp.key(0) = devider; for (int i = tmp.n + 1; i> 0; i--) ( tmp.child(i) = tmp.child(i - 1); ) tmp.child(0) = child; tmp.n++; Remove(tmp, key); return; ) else ( Node lt = null; Node rt = null; boolean last = false; if (pos != x.n) ( devider = x.key(pos); lt = x.child(pos); rt = x.child(pos + 1); ) else ( devider = x.key(pos - 1); rt = x.child(pos); lt = x.child(pos - 1); last = true; pos--; ) for (int i = pos; i < x.n - 1; i++) ( x.key(i) = x.key(i + 1); ) for (int i = pos + 1; i < x.n; i++) ( x.child(i) = x.child(i + 1); ) x.n--; lt.key(lt.n++) = devider; for (int i = 0, j = lt.n; i < rt.n + 1; i++, j++) ( if (i < rt.n) ( lt.key(j) = rt.key(i); ) lt.child(j) = rt.child(i); ) lt.n += rt.n; if (x.n == 0) ( if (x == root) ( root = x.child(0); ) x = x.child(0); ) Remove(lt, key); return; ) ) ) ) public void Remove(int key) ( Node x = Search(root, key); if (x == null) ( return; ) Remove(root, key); ) public void Task(int a, int b) ( Stack st = new Stack(); FindKeys(a, b, root, st); while (st.isEmpty() == false) ( this.Remove(root, st.pop()); ) ) private void FindKeys(int a, int b, Node x, Stack st) ( int i = 0; for (i = 0; i < x.n && x.key(i) a) ( st.push(x.key(i)); ) ) if (!x.leaf) ( for (int j = 0; j < i + 1; j++) ( FindKeys(a, b, x.child(j), st); ) ) ) public boolean Contain(int k) ( if (this.Search(root, k) != null) ( return true; ) else ( return false; ) ) // Show the node private void Show(Node x) ( assert (x == null); for (int i = 0; i < x.n; i++) ( System.out.print(x.key(i) + " "); ) if (!x.leaf) ( for (int i = 0; i < x.n + 1; i++) ( Show(x.child(i)); ) ) ) public static void main(String() args) ( BTree b = new BTree(3); b.Insert(8); b.Insert(9); b.Insert(10); b.Insert(11); b.Insert(15); b.Insert(20); b.Insert(17); b.Show(); b.Remove(10); System.out.println(); b.Show(); ) )
// Deleting a key from a B-tree in C #include #include #define MAX 3 #define MIN 2 struct BTreeNode ( int item(MAX + 1), count; struct BTreeNode *linker(MAX + 1); ); struct BTreeNode *root; // Node creation struct BTreeNode *createNode(int item, struct BTreeNode *child) ( struct BTreeNode *newNode; newNode = (struct BTreeNode *)malloc(sizeof(struct BTreeNode)); newNode->item(1) = item; newNode->count = 1; newNode->linker(0) = root; newNode->linker(1) = child; return newNode; ) // Add value to the node void addValToNode(int item, int pos, struct BTreeNode *node, struct BTreeNode *child) ( int j = node->count; while (j> pos) ( node->item(j + 1) = node->item(j); node->linker(j + 1) = node->linker(j); j--; ) node->item(j + 1) = item; node->linker(j + 1) = child; node->count++; ) // Split the node void splitNode(int item, int *pval, int pos, struct BTreeNode *node, struct BTreeNode *child, struct BTreeNode **newNode) ( int median, j; if (pos> MIN) median = MIN + 1; else median = MIN; *newNode = (struct BTreeNode *)malloc(sizeof(struct BTreeNode)); j = median + 1; while (j item(j - median) = node->item(j); (*newNode)->linker(j - median) = node->linker(j); j++; ) node->count = median; (*newNode)->count = MAX - median; if (pos item(node->count); (*newNode)->linker(0) = node->linker(node->count); node->count--; ) // Set the value in the node int setValueInNode(int item, int *pval, struct BTreeNode *node, struct BTreeNode **child) ( int pos; if (!node) ( *pval = item; *child = NULL; return 1; ) if (item item(1)) ( pos = 0; ) else ( for (pos = node->count; (item item(pos) && pos> 1); pos--) ; if (item == node->item(pos)) ( printf("Duplicates not allowed"); return 0; ) ) if (setValueInNode(item, pval, node->linker(pos), child)) ( if (node->count linker(pos); for (; dummy->linker(0) != NULL;) dummy = dummy->linker(0); myNode->item(pos) = dummy->item(1); ) // Remove the value void removeVal(struct BTreeNode *myNode, int pos) ( int i = pos + 1; while (i count) ( myNode->item(i - 1) = myNode->item(i); myNode->linker(i - 1) = myNode->linker(i); i++; ) myNode->count--; ) // Do right shift void rightShift(struct BTreeNode *myNode, int pos) ( struct BTreeNode *x = myNode->linker(pos); int j = x->count; while (j> 0) ( x->item(j + 1) = x->item(j); x->linker(j + 1) = x->linker(j); ) x->item(1) = myNode->item(pos); x->linker(1) = x->linker(0); x->count++; x = myNode->linker(pos - 1); myNode->item(pos) = x->item(x->count); myNode->linker(pos) = x->linker(x->count); x->count--; return; ) // Do left shift void leftShift(struct BTreeNode *myNode, int pos) ( int j = 1; struct BTreeNode *x = myNode->linker(pos - 1); x->count++; x->item(x->count) = myNode->item(pos); x->linker(x->count) = myNode->linker(pos)->linker(0); x = myNode->linker(pos); myNode->item(pos) = x->item(1); x->linker(0) = x->linker(1); x->count--; while (j count) ( x->item(j) = x->item(j + 1); x->linker(j) = x->linker(j + 1); j++; ) return; ) // Merge the nodes void mergeNodes(struct BTreeNode *myNode, int pos) ( int j = 1; struct BTreeNode *x1 = myNode->linker(pos), *x2 = myNode->linker(pos - 1); x2->count++; x2->item(x2->count) = myNode->item(pos); x2->linker(x2->count) = myNode->linker(0); while (j count) ( x2->count++; x2->item(x2->count) = x1->item(j); x2->linker(x2->count) = x1->linker(j); j++; ) j = pos; while (j count) ( myNode->item(j) = myNode->item(j + 1); myNode->linker(j) = myNode->linker(j + 1); j++; ) myNode->count--; free(x1); ) // Adjust the node void adjustNode(struct BTreeNode *myNode, int pos) ( if (!pos) ( if (myNode->linker(1)->count> MIN) ( leftShift(myNode, 1); ) else ( mergeNodes(myNode, 1); ) ) else ( if (myNode->count != pos) ( if (myNode->linker(pos - 1)->count> MIN) ( rightShift(myNode, pos); ) else ( if (myNode->linker(pos + 1)->count> MIN) ( leftShift(myNode, pos + 1); ) else ( mergeNodes(myNode, pos); ) ) ) else ( if (myNode->linker(pos - 1)->count> MIN) rightShift(myNode, pos); else mergeNodes(myNode, pos); ) ) ) // Delete a value from the node int delValFromNode(int item, struct BTreeNode *myNode) ( int pos, flag = 0; if (myNode) ( if (item item(1)) ( pos = 0; flag = 0; ) else ( for (pos = myNode->count; (item item(pos) && pos> 1); pos--) ; if (item == myNode->item(pos)) ( flag = 1; ) else ( flag = 0; ) ) if (flag) ( if (myNode->linker(pos - 1)) ( copySuccessor(myNode, pos); flag = delValFromNode(myNode->item(pos), myNode->linker(pos)); if (flag == 0) ( printf("Given data is not present in B-Tree"); ) ) else ( removeVal(myNode, pos); ) ) else ( flag = delValFromNode(item, myNode->linker(pos)); ) if (myNode->linker(pos)) ( if (myNode->linker(pos)->count count == 0) ( tmp = myNode; myNode = myNode->linker(0); free(tmp); ) ) root = myNode; return; ) void searching(int item, int *pos, struct BTreeNode *myNode) ( if (!myNode) ( return; ) if (item item(1)) ( *pos = 0; ) else ( for (*pos = myNode->count; (item item(*pos) && *pos> 1); (*pos)--) ; if (item == myNode->item(*pos)) ( printf("%d present in B-tree", item); return; ) ) searching(item, pos, myNode->linker(*pos)); return; ) void traversal(struct BTreeNode *myNode) ( int i; if (myNode) ( for (i = 0; i count; i++) ( traversal(myNode->linker(i)); printf("%d ", myNode->item(i + 1)); ) traversal(myNode->linker(i)); ) ) int main() ( int item, ch; insertion(8); insertion(9); insertion(10); insertion(11); insertion(15); insertion(16); insertion(17); insertion(18); insertion(20); insertion(23); traversal(root); delete (20, root); printf(""); traversal(root); )
// Deleting a key from a B-tree in C++ #include using namespace std; class BTreeNode ( int *keys; int t; BTreeNode **C; int n; bool leaf; public: BTreeNode(int _t, bool _leaf); void traverse(); int findKey(int k); void insertNonFull(int k); void splitChild(int i, BTreeNode *y); void deletion(int k); void removeFromLeaf(int idx); void removeFromNonLeaf(int idx); int getPredecessor(int idx); int getSuccessor(int idx); void fill(int idx); void borrowFromPrev(int idx); void borrowFromNext(int idx); void merge(int idx); friend class BTree; ); class BTree ( BTreeNode *root; int t; public: BTree(int _t) ( root = NULL; t = _t; ) void traverse() ( if (root != NULL) root->traverse(); ) void insertion(int k); void deletion(int k); ); // B tree node BTreeNode::BTreeNode(int t1, bool leaf1) ( t = t1; leaf = leaf1; keys = new int(2 * t - 1); C = new BTreeNode *(2 * t); n = 0; ) // Find the key int BTreeNode::findKey(int k) ( int idx = 0; while (idx < n && keys(idx) < k) ++idx; return idx; ) // Deletion operation void BTreeNode::deletion(int k) ( int idx = findKey(k); if (idx < n && keys(idx) == k) ( if (leaf) removeFromLeaf(idx); else removeFromNonLeaf(idx); ) else ( if (leaf) ( cout << "The key " << k deletion(k); else C(idx)->deletion(k); ) return; ) // Remove from the leaf void BTreeNode::removeFromLeaf(int idx) ( for (int i = idx + 1; i n>= t) ( int pred = getPredecessor(idx); keys(idx) = pred; C(idx)->deletion(pred); ) else if (C(idx + 1)->n>= t) ( int succ = getSuccessor(idx); keys(idx) = succ; C(idx + 1)->deletion(succ); ) else ( merge(idx); C(idx)->deletion(k); ) return; ) int BTreeNode::getPredecessor(int idx) ( BTreeNode *cur = C(idx); while (!cur->leaf) cur = cur->C(cur->n); return cur->keys(cur->n - 1); ) int BTreeNode::getSuccessor(int idx) ( BTreeNode *cur = C(idx + 1); while (!cur->leaf) cur = cur->C(0); return cur->keys(0); ) void BTreeNode::fill(int idx) ( if (idx != 0 && C(idx - 1)->n>= t) borrowFromPrev(idx); else if (idx != n && C(idx + 1)->n>= t) borrowFromNext(idx); else ( if (idx != n) merge(idx); else merge(idx - 1); ) return; ) // Borrow from previous void BTreeNode::borrowFromPrev(int idx) ( BTreeNode *child = C(idx); BTreeNode *sibling = C(idx - 1); for (int i = child->n - 1; i>= 0; --i) child->keys(i + 1) = child->keys(i); if (!child->leaf) ( for (int i = child->n; i>= 0; --i) child->C(i + 1) = child->C(i); ) child->keys(0) = keys(idx - 1); if (!child->leaf) child->C(0) = sibling->C(sibling->n); keys(idx - 1) = sibling->keys(sibling->n - 1); child->n += 1; sibling->n -= 1; return; ) // Borrow from the next void BTreeNode::borrowFromNext(int idx) ( BTreeNode *child = C(idx); BTreeNode *sibling = C(idx + 1); child->keys((child->n)) = keys(idx); if (!(child->leaf)) child->C((child->n) + 1) = sibling->C(0); keys(idx) = sibling->keys(0); for (int i = 1; i n; ++i) sibling->keys(i - 1) = sibling->keys(i); if (!sibling->leaf) ( for (int i = 1; i n; ++i) sibling->C(i - 1) = sibling->C(i); ) child->n += 1; sibling->n -= 1; return; ) // Merge void BTreeNode::merge(int idx) ( BTreeNode *child = C(idx); BTreeNode *sibling = C(idx + 1); child->keys(t - 1) = keys(idx); for (int i = 0; i n; ++i) child->keys(i + t) = sibling->keys(i); if (!child->leaf) ( for (int i = 0; i n; ++i) child->C(i + t) = sibling->C(i); ) for (int i = idx + 1; i < n; ++i) keys(i - 1) = keys(i); for (int i = idx + 2; i n += sibling->n + 1; n--; delete (sibling); return; ) // Insertion operation void BTree::insertion(int k) ( if (root == NULL) ( root = new BTreeNode(t, true); root->keys(0) = k; root->n = 1; ) else ( if (root->n == 2 * t - 1) ( BTreeNode *s = new BTreeNode(t, false); s->C(0) = root; s->splitChild(0, root); int i = 0; if (s->keys(0) C(i)->insertNonFull(k); root = s; ) else root->insertNonFull(k); ) ) // Insertion non full void BTreeNode::insertNonFull(int k) ( int i = n - 1; if (leaf == true) ( while (i>= 0 && keys(i)> k) ( keys(i + 1) = keys(i); i--; ) keys(i + 1) = k; n = n + 1; ) else ( while (i>= 0 && keys(i)> k) i--; if (C(i + 1)->n == 2 * t - 1) ( splitChild(i + 1, C(i + 1)); if (keys(i + 1) insertNonFull(k); ) ) // Split child void BTreeNode::splitChild(int i, BTreeNode *y) ( BTreeNode *z = new BTreeNode(y->t, y->leaf); z->n = t - 1; for (int j = 0; j keys(j) = y->keys(j + t); if (y->leaf == false) ( for (int j = 0; j C(j) = y->C(j + t); ) y->n = t - 1; for (int j = n; j>= i + 1; j--) C(j + 1) = C(j); C(i + 1) = z; for (int j = n - 1; j>= i; j--) keys(j + 1) = keys(j); keys(i) = y->keys(t - 1); n = n + 1; ) // Traverse void BTreeNode::traverse() ( int i; for (i = 0; i traverse(); cout << " "
n == 0) ( BTreeNode *tmp = root; if (root->leaf) root = NULL; else root = root->C(0); delete tmp; ) return; ) int main() ( BTree t(3); t.insertion(8); t.insertion(9); t.insertion(10); t.insertion(11); t.insertion(15); t.insertion(16); t.insertion(17); t.insertion(18); t.insertion(20); t.insertion(23); cout << "The B-tree is: "; t.traverse(); t.deletion(20); cout << "The B-tree is: "; t.traverse(); )
Složenost brisanja
Najbolji slučaj Složenost vremena: Θ(log n)
Prosječna složenost prostora: Θ(n)
Najgori slučaj Složenost prostora: Θ(n)