U ovom uputstvu naučit ćemo čitati CSV datoteke s različitim formatima u Pythonu uz pomoć primjera.
csv
Za ovaj ćemo zadatak koristiti isključivo modul ugrađen u Python. Ali prvo, morat ćemo uvesti modul kao:
import csv
Već smo pokrili osnove kako koristiti csv
modul za čitanje i pisanje u CSV datoteke. Ako nemate pojma o korištenju csv
modula, pogledajte naš vodič o Python CSV: Čitanje i pisanje CSV datoteka
Osnovna upotreba csv.reader ()
Pogledajmo osnovni primjer korištenja csv.reader()
za osvježavanje postojećeg znanja.
Primjer 1: Pročitajte CSV datoteke pomoću csv.reader ()
Pretpostavimo da imamo CSV datoteku sa sljedećim unosima:
SN, ime, doprinos 1, Linus Torvalds, Linux kernel 2, Tim Berners-Lee, World Wide Web 3, Guido van Rossum, programiranje na Pythonu
Sadržaj datoteke možemo čitati pomoću sljedećeg programa:
import csv with open('innovators.csv', 'r') as file: reader = csv.reader(file) for row in reader: print(row)
Izlaz
('SN', 'Name', 'Contribution') ('1', 'Linus Torvalds', 'Linux Kernel') ('2', 'Tim Berners-Lee', 'World Wide Web') ('3' , 'Guido van Rossum', 'Programiranje na Pythonu')
Ovdje smo otvorili datoteku innovators.csv u načinu čitanja pomoću open()
funkcije.
Da biste saznali više o otvaranju datoteka u Pythonu, posjetite: Ulaz / izlaz Python datoteke
Zatim csv.reader()
se koristi za čitanje datoteke koja vraća iterabilni reader
objekt.
Zatim se reader
objekt ponavlja pomoću for
petlje za ispis sadržaja svakog retka.
Sada ćemo pogledati CSV datoteke s različitim formatima. Zatim ćemo naučiti kako prilagoditi csv.reader()
funkciju da ih čita.
CSV datoteke s prilagođenim graničnicima
Prema zadanim postavkama zarez se koristi kao graničnik u CSV datoteci. Međutim, neke CSV datoteke mogu koristiti graničnike koji nisu zarez. Malo je popularnih |
i
.
Pretpostavimo da je datoteka innovators.csv u primjeru 1 koristila tab kao graničnik. Da bismo pročitali datoteku, funkciji možemo proslijediti dodatni delimiter
parametar csv.reader()
.
Uzmimo primjer.
Primjer 2: Pročitajte CSV datoteku s razdjelnikom kartice
import csv with open('innovators.csv', 'r') as file: reader = csv.reader(file, delimiter = ' ') for row in reader: print(row)
Izlaz
('SN', 'Name', 'Contribution') ('1', 'Linus Torvalds', 'Linux Kernel') ('2', 'Tim Berners-Lee', 'World Wide Web') ('3' , 'Guido van Rossum', 'Programiranje na Pythonu')
Kao što vidimo, neobavezni parametar delimiter = ' '
pomaže u određivanju reader
objekta koji CSV datoteka iz koje čitamo ima tabulatore kao graničnik.
CSV datoteke s početnim razmacima
Neke CSV datoteke nakon graničnika mogu imati razmak. Kada koristimo zadanu csv.reader()
funkciju za čitanje ovih CSV datoteka, dobit ćemo i razmake u izlazu.
Da bismo uklonili ove početne razmake, moramo proslijediti dodatni parametar tzv skipinitialspace
. Pogledajmo primjer:
Primjer 3: Pročitajte CSV datoteke s početnim razmacima
Pretpostavimo da imamo CSV datoteku koja se naziva people.csv sa sljedećim sadržajem:
SN, Ime, Grad 1, John, Washington 2, Eric, Los Angeles 3, Brad, Texas
CSV datoteku možemo čitati na sljedeći način:
import csv with open('people.csv', 'r') as csvfile: reader = csv.reader(csvfile, skipinitialspace=True) for row in reader: print(row)
Izlaz
('SN', 'Ime', 'Grad') ('1', 'John', 'Washington') ('2', 'Eric', 'Los Angeles') ('3', 'Brad', ' Teksas ')
Program je sličan ostalim primjerima, ali ima dodatni skipinitialspace
parametar koji je postavljen na True.
To omogućuje reader
objektu da zna da unosi imaju početni razmak. Kao rezultat, uklanjaju se početni razmaci koji su bili prisutni nakon graničnika.
CSV datoteke s navodnicima
Neke CSV datoteke mogu imati citate oko svakog ili nekih unosa.
Uzmimo za primjer quotes.csv sa sljedećim unosima:
"SN", "Ime", "Citati" 1, Buddha, "Ono što mislimo da smo postali" 2, Mark Twain, "Nikad ne žalite ni zbog čega što vam se nasmiješilo" 3, Oscar Wilde, "Budi svoj, svi ostali su već zauzeti"
Korištenje csv.reader()
u minimalnom načinu rezultirat će ispisom pod navodnicima.
Da bismo ih uklonili, morat ćemo upotrijebiti drugi opcijski parametar koji se naziva quoting
.
Pogledajmo primjer kako čitati gornji program.
Primjer 4: Pročitajte CSV datoteke s navodnicima
import csv with open('person1.csv', 'r') as file: reader = csv.reader(file, quoting=csv.QUOTE_ALL, skipinitialspace=True) for row in reader: print(row)
Izlaz
('SN', 'Name', 'Quotes') ('1', 'Buddha', 'What we think we become') ('2', 'Mark Twain', 'Never regret anything that made you smile') ('3', 'Oscar Wilde', 'Be yourself everyone else is already taken')
As you can see, we have passed csv.QUOTE_ALL
to the quoting
parameter. It is a constant defined by the csv
module.
csv.QUOTE_ALL
specifies the reader object that all the values in the CSV file are present inside quotation marks.
There are 3 other predefined constants you can pass to the quoting
parameter:
csv.QUOTE_MINIMAL
- Specifiesreader
object that CSV file has quotes around those entries which contain special characters such as delimiter, quotechar or any of the characters in lineterminator.csv.QUOTE_NONNUMERIC
- Specifies thereader
object that the CSV file has quotes around the non-numeric entries.csv.QUOTE_NONE
- Specifies the reader object that none of the entries have quotes around them.
Dialects in CSV module
Notice in Example 4 that we have passed multiple parameters (quoting
and skipinitialspace
) to the csv.reader()
function.
This practice is acceptable when dealing with one or two files. But it will make the code more redundant and ugly once we start working with multiple CSV files with similar formats.
As a solution to this, the csv
module offers dialect
as an optional parameter.
Dialect helps in grouping together many specific formatting patterns like delimiter
, skipinitialspace
, quoting
, escapechar
into a single dialect name.
It can then be passed as a parameter to multiple writer
or reader
instances.
Example 5: Read CSV files using dialect
Suppose we have a CSV file (office.csv) with the following content:
"ID"| "Name"| "Email" "A878"| "Alfonso K. Hamby"| "[email protected]" "F854"| "Susanne Briard"| "[email protected]" "E833"| "Katja Mauer"| "[email protected]"
The CSV file has initial spaces, quotes around each entry, and uses a |
delimiter.
Instead of passing three individual formatting patterns, let's look at how to use dialects to read this file.
import csv csv.register_dialect('myDialect', delimiter='|', skipinitialspace=True, quoting=csv.QUOTE_ALL) with open('office.csv', 'r') as csvfile: reader = csv.reader(csvfile, dialect='myDialect') for row in reader: print(row)
Output
('ID', 'Name', 'Email') ("A878", 'Alfonso K. Hamby', '[email protected]') ("F854", 'Susanne Briard', '[email protected]') ("E833", 'Katja Mauer', '[email protected]')
From this example, we can see that the csv.register_dialect()
function is used to define a custom dialect. It has the following syntax:
csv.register_dialect(name(, dialect(, **fmtparams)))
The custom dialect requires a name in the form of a string. Other specifications can be done either by passing a sub-class of Dialect
class, or by individual formatting patterns as shown in the example.
While creating the reader object, we pass dialect='myDialect'
to specify that the reader instance must use that particular dialect.
The advantage of using dialect
is that it makes the program more modular. Notice that we can reuse 'myDialect' to open other files without having to re-specify the CSV format.
Read CSV files with csv.DictReader()
The objects of a csv.DictReader()
class can be used to read a CSV file as a dictionary.
Example 6: Python csv.DictReader()
Suppose we have a CSV file (people.csv) with the following entries:
Name | Age | Profession |
---|---|---|
Jack | 23 | Doctor |
Miller | 22 | Engineer |
Let's see how csv.DictReader()
can be used.
import csv with open("people.csv", 'r') as file: csv_file = csv.DictReader(file) for row in csv_file: print(dict(row))
Output
('Name': 'Jack', ' Age': ' 23', ' Profession': ' Doctor') ('Name': 'Miller', ' Age': ' 22', ' Profession': ' Engineer')
As we can see, the entries of the first row are the dictionary keys. And, the entries in the other rows are the dictionary values.
Here, csv_file is a csv.DictReader()
object. The object can be iterated over using a for
loop. The csv.DictReader()
returned an OrderedDict
type for each row. That's why we used dict()
to convert each row to a dictionary.
Notice that we have explicitly used the dict() method to create dictionaries inside the for
loop.
print(dict(row))
Note: Starting from Python 3.8, csv.DictReader()
returns a dictionary for each row, and we do not need to use dict()
explicitly.
The full syntax of the csv.DictReader()
class is:
csv.DictReader(file, fieldnames=None, restkey=None, restval=None, dialect='excel', *args, **kwds)
To learn more about it in detail, visit: Python csv.DictReader() class
Using csv.Sniffer class
The Sniffer
class is used to deduce the format of a CSV file.
The Sniffer
class offers two methods:
sniff(sample, delimiters=None)
- This function analyses a given sample of the CSV text and returns aDialect
subclass that contains all the parameters deduced.
An optional delimiters parameter can be passed as a string containing possible valid delimiter characters.
has_header(sample)
- This function returnsTrue
orFalse
based on analyzing whether the sample CSV has the first row as column headers.
Let's look at an example of using these functions:
Example 7: Using csv.Sniffer() to deduce the dialect of CSV files
Suppose we have a CSV file (office.csv) with the following content:
"ID"| "Name"| "Email" A878| "Alfonso K. Hamby"| "[email protected]" F854| "Susanne Briard"| "[email protected]" E833| "Katja Mauer"| "[email protected]"
Let's look at how we can deduce the format of this file using csv.Sniffer()
class:
import csv with open('office.csv', 'r') as csvfile: sample = csvfile.read(64) has_header = csv.Sniffer().has_header(sample) print(has_header) deduced_dialect = csv.Sniffer().sniff(sample) with open('office.csv', 'r') as csvfile: reader = csv.reader(csvfile, deduced_dialect) for row in reader: print(row)
Output
True ('ID', 'Name', 'Email') ('A878', 'Alfonso K. Hamby', '[email protected]') ('F854', 'Susanne Briard', '[email protected]') ('E833', 'Katja Mauer', '[email protected]')
As you can see, we read only 64 characters of office.csv and stored it in the sample variable.
This sample was then passed as a parameter to the Sniffer().has_header()
function. It deduced that the first row must have column headers. Thus, it returned True
which was then printed out.
Slično tome, uzorak je također proslijeđen Sniffer().sniff()
funkciji. Vratio je sve izvedene parametre kao Dialect
potklasu koja je zatim spremljena u varijablu deduced_dialect.
Kasnije smo ponovno otvorili CSV datoteku i proslijedili deduced_dialect
varijablu kao parametar csv.reader()
.
Bilo je točno mogli predvidjeti delimiter
, quoting
a skipinitialspace
parametri u office.csv datoteke bez nas ih izričito spominje.
Napomena: csv modul može se koristiti i za druge nastavke datoteka (poput: .txt ) sve dok je njihov sadržaj u ispravnoj strukturi.
Preporučeno čitanje: Zapišite u CSV datoteke na Pythonu