Struktura podataka steka i implementacija u Pythonu, Javi i C / C ++

U ovom vodiču naučit ćete o strukturi podataka steka i njihovoj implementaciji u Pythonu, Javi i C / C ++.

Stog je korisna struktura podataka u programiranju. Baš je poput hrpe tanjura držanih jedna na drugoj.

Prikaz sloga sličan hrpi tanjura

Razmislite o stvarima koje možete učiniti s takvom hrpom tanjura

  • Stavite novi tanjur na vrh
  • Uklonite gornju ploču

Ako želite ploču na dnu, prvo morate ukloniti sve ploče na vrhu. Takav se aranžman naziva Last In First Out - posljednja stavka koja je prva stavka koja izađe.

LIFO princip sloga

U programskom smislu, stavljanje stavke na vrh stoga naziva se push, a uklanjanje stavke naziva pop .

Složite push i pop operacije

Na gornjoj je slici, iako je stavka 2 zadnja zadržana, prvo uklonjena - pa slijedi načelo Last In First Out (LIFO) .

Stog možemo implementirati u bilo koji programski jezik poput C, C ++, Java, Python ili C #, ali specifikacija je gotovo ista.

Osnovne operacije steka

Stog je objekt (apstraktni tip podataka - ADT) koji omogućuje sljedeće operacije:

  • Guranje : dodajte element na vrh stoga
  • Skok : Uklonite element s vrha hrpe
  • IsEmpty : Provjerite je li stog prazan
  • IsFull : Provjerite je li stog pun
  • Zavirite : Dohvatite vrijednost gornjeg elementa bez uklanjanja

Rad strukture podataka steka

Operacije rade kako slijedi:

  1. Pokazivač zvan TOP koristi se za praćenje gornjeg elementa u stogu.
  2. Pri inicijalizaciji stoga postavljamo njegovu vrijednost na -1 kako bismo usporedbom mogli provjeriti je li stog prazan TOP == -1.
  3. Pritiskom na element povećavamo vrijednost TOP-a i postavljamo novi element u položaj na koji pokazuje TOP.
  4. Nakon iskakanja elementa, vraćamo element na koji ukazuje TOP i smanjujemo njegovu vrijednost.
  5. Prije guranja provjeravamo je li stog već pun
  6. Prije pucanja provjeravamo je li stog već prazan
Rad strukture podataka steka

Implementacije stoga u Python, Java, C i C ++

Najčešća implementacija stoga je upotreba nizova, ali se također može implementirati pomoću popisa.

Python Java C C +
 # Stack implementation in python # Creating a stack def create_stack(): stack = () return stack # Creating an empty stack def check_empty(stack): return len(stack) == 0 # Adding items into the stack def push(stack, item): stack.append(item) print("pushed item: " + item) # Removing an element from the stack def pop(stack): if (check_empty(stack)): return "stack is empty" return stack.pop() stack = create_stack() push(stack, str(1)) push(stack, str(2)) push(stack, str(3)) push(stack, str(4)) print("popped item: " + pop(stack)) print("stack after popping an element: " + str(stack)) 
 // Stack implementation in Java class Stack ( private int arr(); private int top; private int capacity; // Creating a stack Stack(int size) ( arr = new int(size); capacity = size; top = -1; ) // Add elements into stack public void push(int x) ( if (isFull()) ( System.out.println("OverFlowProgram Terminated"); System.exit(1); ) System.out.println("Inserting " + x); arr(++top) = x; ) // Remove element from stack public int pop() ( if (isEmpty()) ( System.out.println("STACK EMPTY"); System.exit(1); ) return arr(top--); ) // Utility function to return the size of the stack public int size() ( return top + 1; ) // Check if the stack is empty public Boolean isEmpty() ( return top == -1; ) // Check if the stack is full public Boolean isFull() ( return top == capacity - 1; ) public void printStack() ( for (int i = 0; i <= top; i++) ( System.out.println(arr(i)); ) ) public static void main(String() args) ( Stack stack = new Stack(5); stack.push(1); stack.push(2); stack.push(3); stack.push(4); stack.pop(); System.out.println("After popping out"); stack.printStack(); ) )
 // Stack implementation in C #include #include #define MAX 10 int count = 0; // Creating a stack struct stack ( int items(MAX); int top; ); typedef struct stack st; void createEmptyStack(st *s) ( s->top = -1; ) // Check if the stack is full int isfull(st *s) ( if (s->top == MAX - 1) return 1; else return 0; ) // Check if the stack is empty int isempty(st *s) ( if (s->top == -1) return 1; else return 0; ) // Add elements into stack void push(st *s, int newitem) ( if (isfull(s)) ( printf("STACK FULL"); ) else ( s->top++; s->items(s->top) = newitem; ) count++; ) // Remove element from stack void pop(st *s) ( if (isempty(s)) ( printf(" STACK EMPTY "); ) else ( printf("Item popped= %d", s->items(s->top)); s->top--; ) count--; printf(""); ) // Print elements of stack void printStack(st *s) ( printf("Stack: "); for (int i = 0; i items(i)); ) printf(""); ) // Driver code int main() ( int ch; st *s = (st *)malloc(sizeof(st)); createEmptyStack(s); push(s, 1); push(s, 2); push(s, 3); push(s, 4); printStack(s); pop(s); printf("After popping out"); printStack(s); )
 // Stack implementation in C++ #include #include using namespace std; #define MAX 10 int size = 0; // Creating a stack struct stack ( int items(MAX); int top; ); typedef struct stack st; void createEmptyStack(st *s) ( s->top = -1; ) // Check if the stack is full int isfull(st *s) ( if (s->top == MAX - 1) return 1; else return 0; ) // Check if the stack is empty int isempty(st *s) ( if (s->top == -1) return 1; else return 0; ) // Add elements into stack void push(st *s, int newitem) ( if (isfull(s)) ( printf("STACK FULL"); ) else ( s->top++; s->items(s->top) = newitem; ) size++; ) // Remove element from stack void pop(st *s) ( if (isempty(s)) ( printf(" STACK EMPTY "); ) else ( printf("Item popped= %d", s->items(s->top)); s->top--; ) size--; cout << endl; ) // Print elements of stack void printStack(st *s) ( printf("Stack: "); for (int i = 0; i < size; i++) ( cout 

Stack Time Complexity

For the array-based implementation of a stack, the push and pop operations take constant time, i.e. O(1).

Applications of Stack Data Structure

Although stack is a simple data structure to implement, it is very powerful. The most common uses of a stack are:

  • To reverse a word - Put all the letters in a stack and pop them out. Because of the LIFO order of stack, you will get the letters in reverse order.
  • In compilers - Compilers use the stack to calculate the value of expressions like 2 + 4 / 5 * (7 - 9) by converting the expression to prefix or postfix form.
  • In browsers - The back button in a browser saves all the URLs you have visited previously in a stack. Each time you visit a new page, it is added on top of the stack. When you press the back button, the current URL is removed from the stack, and the previous URL is accessed.

Zanimljivi članci...